Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Small ; : e2311131, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644339

RESUMO

High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.

2.
Psychogeriatrics ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567766

RESUMO

BACKGROUND: Most studies have focused on comparing blood lipid biomarkers between Parkinson's disease (PD) and normal controls (NC). However, further research is necessary to explore the impact of blood lipid levels on motor and cognitive function, as well as the progression of motor dysfunction and cognitive decline over time. Thus, the aim of this study is to investigate the relationship between blood lipid biomarkers and these indicators in individuals with PD. METHODS: The cohort study enrolled 157 PD patients and 146 NC from the Tianjin Huanhu Hospital from September 2017 to September 2019. Serum lipid fractions were detected in fasting serum samples. PD patients were followed up at 2 ± 0.6 years for clinical assessment. RESULTS: PD patients exhibited lower serum triglyceride (TG) levels as compared to NC (P = 0.008). PD male patients exhibited lower serum lipoprotein cholesterol(LDL-C) and total cholesterol (TC) levels than female patients (LDL-C: P = 0.034; TC: P = 0.019). Serum TG levels correlated significantly with Unified PD Rating Scale III, Hoehn and Yahr stage and Montreal Cognitive Assessment scores in PD patients. Additionally, serum TG levels were associated with follow-up motor function decline and cognitive decline in adjusted regression models in PD patients. CONCLUSIONS: To summarise, the study findings suggest that decreased serum TG levels are significantly associated with greater motor dysfunction, cognitive dysfunction and the greater deterioration of the two indicators.

3.
J Asian Nat Prod Res ; : 1-17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572941

RESUMO

In recent years, with sinomenine hydrochloride as the main ingredient, Qingfengteng had been formulated as various dosage forms for clinical treatment. Subsequent findings confirmed a variety of biological roles for sinomenine. Here, 15 H2S-donating sinomenine derivatives were synthesized. Target hybrids a11 displayed substantial cytotoxic effects on cancer cell lines, particularly against K562 cells, with an IC50 value of 1.36 µM. In-depth studies demonstrated that a11 arrested cell cycle at G1 phase, induced apoptosis via both morphological changes in nucleus and membrane potential collapse in mitochondria. These results indicated a11 exerted an antiproliferative effect through apoptosis induction via mitochondrial pathway.

4.
Adv Mater ; : e2400075, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597782

RESUMO

Designing nanocomposite hydrogels with oriented nanosheets has emerged as a promising toolkit to achieve preferential performances that go beyond their disordered counterparts. Although current fabrication strategies via electric/magnetic force fields have made remarkable achievements, they necessitate special properties of nanosheets and suffer from an inferior orientation degree of nanosheets. Herein, a facile and universal approach is discovered to elaborate MXene-based nanocomposite hydrogels with highly oriented, heterogeneous architecture by virtue of supergravity to replace conventional force fields. The key to such architecture is to leverage bidirectional, force-tunable attributes of supergravity containing coupled orthogonal shear and centrifugal force field for steering high-efficient movement, pre-orientation, and stacking of MXene nanosheets in the bottom. Such a synergetic effect allows for yielding heterogeneous nanocomposite hydrogels with a high-orientation MXene-rich layer (orientation degree, f = 0.83) and a polymer-rich layer. The authors demonstrate that MXene-based nanocomposite hydrogels leverage their high-orientation, heterogeneous architecture to deliver an extraordinary electromagnetic interference shielding effectiveness of 55.2 dB at 12.4 GHz yet using a super-low MXene of 0.3 wt%, surpassing most hydrogels-based electromagnetic shielding materials. This versatile supergravity-steered strategy can be further extended to arbitrary nanosheets including MoS2, GO, and C3N4, offering a paradigm in the development of oriented nanocomposites.

5.
Transl Pediatr ; 13(2): 300-309, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455749

RESUMO

Background: High-dose methotrexate (HDMTX) is crucial in treating pediatric malignant hematological tumors. However, its use is often complicated by delayed excretion and associated adverse reactions, which can significantly affect treatment outcomes and patient safety. Identifying risk factors is essential for safer, more effective therapy. This study aimed to investigate the influencing factors for delayed excretion and their correlation with adverse reactions in children with malignant hematological tumors after receiving HDMTX chemotherapy. Methods: From April to October 2021, the clinical information of children who had undergone HDMTX chemotherapy and had their blood tested for drug concentration was gathered by the Department of Hematology and Oncology at Shanghai Children's Medical Center. Via univariate and multivariate logistic regression, the factors affecting the delayed excretion of HDMTX were examined, and the relationship between delayed excretion and unfavorable effects in children was determined. Results: This study included 99 patients comprising 199 courses of HDMTX. The occurrence rate of HDMTX delayed excretion was 20.1%. Age ≥9 years and a 24-hour methotrexate (MTX) concentration of 64 µmol/L were independent risk factors for delayed MTX excretion according to multivariate logistic regression analysis (P<0.05). Negative side effects, such as fever, infection, mucositis, gastrointestinal response, and decreased platelet count in children with delayed excretion were statistically significant when compared to those of children with normal excretion. White blood cell reduction, hemoglobin levels below 65 g/L, MTX excretion delay, and concomitant etoposide treatment were all independent risk factors for infection in children. Conclusions: To estimate the risk of delayed MTX excretion during HDMTX therapy, patient laboratory data should be scrutinized, especially for patients ≥9 years or those with a 24-hour MTX concentration of greater than 64 µmol/L.

6.
BMC Biol ; 22(1): 48, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413974

RESUMO

BACKGROUND: Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS: We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS: We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.


Assuntos
Células-Tronco Neurais , Via de Sinalização Wnt , Humanos , Cílios/metabolismo , Neurônios/fisiologia , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Small ; : e2310952, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377230

RESUMO

Salt scaling poses a significant obstacle to the practical implementation of solar-driven evaporation for desalination. Attempts to mitigate scaling by enhancing mass transfer often lead to a compromise in evaporation efficiency due to associated heat loss. In the present work, a novel seesaw evaporator with a Janus structure to harness scaling for periodic self-descaling is reported. The seesaw evaporators are facilely fabricated by delignifying balsa wood and subsequently single-sided spray-coating it with soot and polydimethylsiloxane (PDMS). This unique Janus structure enables the evaporator to float on the brine while ensuring an ample supply of solution for evaporation. During evaporation, salt ions are transported directionally toward the cocked end of the evaporator to form scaling, triggering the seesaw evaporator to flip once a threshold is reached. The accumulated salts re-dissolve back into the solution. By adjusting the tilt angle, the evaporator can achieve an impressive evaporation rate of up to 2.65 kg m-2  h-1 when evaporating an 8 wt.% NaCl solution. Remarkably, these evaporators maintain a stable evaporation rate during prolonged 120 h operation and produce ≈3.93-6.35 L m⁻2 ·day⁻¹ of freshwater from simulated brines when assembled into an evaporation device.

8.
Mater Horiz ; 11(5): 1152-1176, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38165799

RESUMO

Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.

9.
Plant Physiol Biochem ; 207: 108316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176189

RESUMO

Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.


Assuntos
Morus , Morus/genética , Boro/toxicidade , Boro/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Folhas de Planta/metabolismo
10.
ACS Nano ; 18(3): 2434-2445, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206056

RESUMO

Extracting lithium from seawater has emerged as a disruptive platform to resolve the issue of an ever-growing lithium shortage. However, achieving highly efficient and durable lithium extraction from seawater in an energy-efficient manner is challenging, as imposed by the low concentration of lithium ions (Li+) and high concentration of interfering ions in seawater. Here, we report a facile and universal strategy to develop photothermal "ion pumps" (PIPs) that allow achieving energy-efficient, augmented, and durable lithium extraction from seawater under sunlight. The key design of PIPs lies in the function fusion and spatial configuration manipulation of a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell for governing gravity-driven water flow and solar-driven water evaporation. Such a synergetic effect allows PIPs to achieve spontaneous, continuous, and augmented Li+ replenishment-diffusion-enrichment, as well as circumvent the impact of concentration polarization and scaling of interfering ions. We demonstrate that our PIPs exhibit dramatic enhancement in Li+ trapping rate and outstanding Li+ separation factor yet have ultralow energy consumption. Moreover, our PIPs deliver ultrastable Li+ trapping performance without scaling even under high-concentration interfering ions for 140 h operation, as opposed to the significant decrease of nearly 55.6% in conventional photothermal configuration. The design concept and material toolkit developed in this work can also find applications in extracting high-value-added resources from seawater and beyond.

11.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297362

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Guanidinoacetato N-Metiltransferase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição/genética , Neoplasias Pancreáticas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Repressoras
12.
Adv Mater ; 36(3): e2308977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968865

RESUMO

Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Humanos , Nanomedicina , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos
13.
J Subst Use Addict Treat ; 156: 209189, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866441

RESUMO

INTRODUCTION: Methamphetamine use disorder (MUD) can cause impulsive behavior, anxiety, and depression. Stimulation of the left dorsolateral prefrontal cortex in MUD patients by intermittent theta burst repetitive transcranial magnetic stimulation (iTBS-rTMS) is effective in reducing cravings, impulsive behavior, anxiety, and depression. The purpose of this study was to explore whether these psychological factors helped to predict MUD patients' responses to iTBS-rTMS treatment. METHODS: Fifty MUD patients and sixty healthy subjects matched for general conditions were used as study subjects. The study randomly divided MUD patients into iTBS-rTMS and sham stimulation groups and received 20 sessions of real or sham iTBS-rTMS treatment, and the study collected cue-related evoked craving data before and after treatment. All subjects completed the Barratt Impulsiveness Scale (BIS-11), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). RESULTS: The MUD patients showed significantly higher levels of impulsivity, anxiety, and depression than the healthy subjects. The MUD patients who received the real treatment had significantly lower impulsivity, anxiety, and depression scores, and better treatment effects on cravings than the sham stimulation group. The Spearman rank correlation and stepwise multiple regression analyses showed that the baseline BIS-11 and the reduction rate (RR) of BIS-11 and RR of SDS were positively correlated with the decrease in cravings in the iTBS-rTMS group. ROC curve analysis showed that RR of SDS (AUC = 91.6 %; 95 % CI = 0.804-1.000) had predictive power to iTBS- rTMS therapeutic efficacy, the cutoff value is 15.102 %. CONCLUSIONS: iTBS-rTMS had a good therapeutic effect in MUD patients and the baseline impulsivity, the improved depression and impulsivity were associated with therapeutic effect of iTBS-rTMS. The improved depression had the potential to predict the efficacy of the iTBS-rTMS modality for MUD treatment.


Assuntos
Depressão , Estimulação Magnética Transcraniana , Humanos , Ansiedade/terapia , Depressão/terapia , Comportamento Impulsivo , Ritmo Teta/fisiologia
14.
Bioorg Med Chem Lett ; 97: 129545, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939862

RESUMO

Traditional Chinese medicine Qingfengteng primarily acquired from the dried canes of Sinomenium acutum (Thunb.) Rehd. et Wils. var. cinereum Rehd. et Wils. and S. acutum (Thunb.) Rehd. et Wils. For the therapeutic treatment of rheumatism, acute arthritis, and rheumatoid arthritis based on Qingfengteng, sinomenine hydrochloride was recently made the principal active ingredient in various dosage forms. 8-Bis(benzylthio)octanoic acid (CPI-613) was an orphan medicine that the FDA and EMA approved orphan for the treatment of certain resistant malignancies. Its unique mode of action and minimal toxicity toward normal tissues made for an apt pharmacophore. In order to expand the field of sinomenine anticancer structures, sinomenine/8-Bis(benzylthio)octanoic acid derivatives were designed and synthesized. Among them, target hybrids e4 stood out for having notable cytotoxic effects against cancer cell lines, especially for K562 cells, with IC50 values of 2.45 µM and high safety. In-depth investigations demonstrated that e4 caused apoptosis by stopping the cell cycle at G1 phase, and doing so by altering the morphology of the nucleus and causing membrane potential of the in mitochondria to collapse. These results indicated e4 exerted an antiproliferative effect through apoptosis induction via mitochondrial pathway.


Assuntos
Morfinanos , Caprilatos/farmacologia , Medicina Tradicional Chinesa , Morfinanos/farmacologia , Morfinanos/química
15.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069181

RESUMO

Mulberry plants (Morus alba) have leaf shapes, ranging from unlobed to lobed, which are crucial for yield, growth, and adaptability, indicating their ability to adapt to their environment. Competing endogenous RNAs (ceRNAs) constitute a web of RNAs within the organism's transcriptional regulatory system, including protein-coding genes (mRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and others. In this study, samples for ceRNA sequencing were categorized into two groups: whole leaves and lobed leaves, each group with three replicates. In addition, we isolated, cloned, and characterized the precursor miRNA (miR156x) from the leaves of M. alba. miR156x precursor had a length of 107 base pairs and a minimum folding free energy of 50.27 kcal/mol. We constructed a pCAMBIA-35S-GUS-miR156x dual overexpression vector and established a transient transformation system for mulberry. At an optimal transformation solution (OD600 = 0.7), the GUS gene showed a higher expression in the leaves of transiently transformed mulberry with miR156x overexpression, four days after transformation, while the target genes of miR156x had decreased expression in the same leaves. Investigations into the transgenic mulberry plants uncovered various modifications to physio-chemical parameters including POD, SOD, PRO, MDA, soluble proteins and sugars, and chlorophyl content. miRNAs in the plants were found to act as negative regulators of gene expression in response to changes in leaf shape regulation, which was confirmed in vitro using dual-luciferase reporter assays. Subsequently, we cloned Maspl3 in vitro and conducted GST-Pull down assays, obtaining multiple proteins that interacted with the Maspl3 gene. This indicates that the miR156x/Maspl3/MSTRG.25812.1 regulatory module contributes to the differences in mulberry leaf shape.


Assuntos
MicroRNAs , Morus , Morus/química , Folhas de Planta/metabolismo , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , Genes Reguladores
16.
Theranostics ; 13(15): 5386-5417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908735

RESUMO

Stimuli-activatable strategies prevail in the design of nanomedicine for cancer theranostics. Upon exposure to endogenous/exogenous stimuli, the stimuli-activatable nanomedicine could be self-assembled, disassembled, or functionally activated to improve its biosafety and diagnostic/therapeutic potency. A myriad of tumor-specific features, including a low pH, a high redox level, and overexpressed enzymes, along with exogenous physical stimulation sources (light, ultrasound, magnet, and radiation) have been considered for the design of stimuli-activatable nano-medicinal products. Recently, novel stimuli sources have been explored and elegant designs emerged for stimuli-activatable nanomedicine. In addition, multi-functional theranostic nanomedicine has been employed for imaging-guided or image-assisted antitumor therapy. In this review, we rationalize the development of theranostic nanomedicine for clinical pressing needs. Stimuli-activatable self-assembly, disassembly or functional activation approaches for developing theranostic nanomedicine to realize a better diagnostic/therapeutic efficacy are elaborated and state-of-the-art advances in their structural designs are detailed. A reflection, clinical status, and future perspectives in the stimuli-activatable nanomedicine are provided.


Assuntos
Nanomedicina , Neoplasias , Humanos , Medicina de Precisão , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Oxirredução
17.
Small ; : e2307302, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994389

RESUMO

Metal-semiconductor heterostructured catalysts have attracted great attention because of their unique interfacial characteristics and superior catalytic performance. Exsolution of nanoparticles is one of the effective and simple ways for in-situ growth of metal nanoparticles embedded in oxide surfaces and their favorable dispersion and stability. However, both high-temperature and a reducing atmosphere are required simultaneously in conventional exsolution, which is time-consuming and costly, and particles often agglomerate during the process. In this work, Ca0.9 Ti0.8 Ni0.1 Fe0.1 O3-δ (CTNF) is exposed to dielectric blocking discharge (DBD) plasma at room temperature to fabricate alloying FeNi3 nanoparticles from CTNF perovskite. FeNi3 -CTNF has outstanding catalytic activity for photothermal reverse water gas shift reaction (RWGS). At 350 °C under full-spectrum irradiation, the carbon monoxide (CO) yield of FeNi3 -CTNF (10.78 mmol g-1 h-1 ) is 11 times that of pure CaTiO3 (CTO), and the CO selectivity is 98.9%. This superior catalytic activity is attributed to the narrow band gap, photogenerated electron migration to alloy particles, and abundant surface oxygen vacancies. The carbene pathway reaction is also investigated through in-situ Raman spectroscopy. The present work presents a straightforward method for the exsolution of nanoalloys in metal-semiconductor heterostructures for photothermal CO2 reduction.

18.
Toxics ; 11(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37999562

RESUMO

Guanidine disinfectants are important chemical agents with a broad spectrum of activity that are effective against most microorganisms. Chlorhexidine, one of the most used guanidine disinfectants, is added to shampoo and mouthwash and applied in medical device sterilization. During the use of chlorhexidine, aerosols with micron particle size may be formed, which may cause inhalation toxicity. To assess the toxicity of inhaled chlorhexidine aerosol, mice underwent the intratracheal instillation of different concentrations of chlorhexidine (0, 0.125%, 0.25%, 0.5%, and 1%) using a MicroSprayer Aerosolizer. The mice were exposed for eight weeks and then sacrificed to obtain lung tissue for subsequent experiments. Histopathology staining revealed damaged lung tissues and increased collagen exudation. At the same time, pulmonary function tests showed that chlorhexidine exposure could cause restrictive ventilatory dysfunction, consistent with pulmonary fibrosis. The results of transcriptome analyses suggest that chlorhexidine may trigger an inflammatory response and promote the activation of pathways related to extracellular matrix deposition. Further, we identified that chlorhexidine exposure might enhance mucus secretion by up-regulating Muc5b and Muc5ac genes, thereby inducing fibrosis-like injury. These findings underscore the need for standardized use of disinfectants and the assessment of their inhalation toxicity.

19.
Hypertension ; 80(12): 2687-2696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869894

RESUMO

BACKGROUND: Short-term exposure to ambient particulate matter (PM) can raise blood pressure, but the underlying mechanisms are unclear. We explored whether arachidonate metabolites serve as biological intermediates in PM-associated prohypertensive changes. METHODS: This panel study recruited 110 adults aged 50 to 65 years living in Beijing, China. The participants' blood pressure, arterial stiffness, and cardiac and endothelial function were measured up to 7 times. The serum concentrations of arachidonate metabolites were quantified by targeted lipidomics. Ambient concentrations of fine PM (PM2.5), black carbon, and accumulation mode particles were continuously monitored at a station and their associations with the health indicators were evaluated. RESULTS: Interquartile range increases in 25 to 96-hour-lag exposure to PM2.5, black carbon, and accumulation mode particles were associated with significant increases in systolic blood pressure (brachial: 0.8-3.2 mm Hg; central: 0.7-2.8 mm Hg) and diastolic blood pressure (brachial, 0.5-1.5 mm Hg; central, 0.5-1.6 mm Hg). At least 1 pollutant was associated with increases in augmentation pressure and heart rate and decreases in reactive hyperemia index and ejection time. The serum concentrations of arachidonate were significantly increased by 3.3% to 14.6% in association with PM exposure, which mediated 9% of the PM-associated increases in blood pressure. The levels of eicosanoids from the cytochrome P450, cyclooxygenase, and lipoxygenase pathways changed with PM exposure, and those from the cytochrome pathway significantly mediated the association between PM exposure and blood pressure. CONCLUSIONS: Short-term exposure to particulate air pollution was associated with a prohypertensive change in adults, which was in part mediated by alteration of arachidonate metabolism.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Pressão Sanguínea , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Carbono , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
20.
Soft Matter ; 19(40): 7815-7827, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796103

RESUMO

The bending tendency of a surfactant monolayer at an interface is critical in determining the type of emulsion formed and the proximity of the emulsion system to its equilibrium state. Despite its importance, the influence of interaction and surfactant structure on the bending tendency has not been quantitatively investigated. In this study, we develop and validate an artificial neural network (ANN) model based on the torque densities from dissipative particle dynamics (DPD) simulations to address this gap. With the validated ANN model, the relationship between surfactant monolayer bending tendency and all the interaction parameters, oil size, and surfactant structure (size and tail branching) was derived, from which the significance of each factor was ranked. With this ANN model, both the relationship and factor analysis can be instantly investigated without further DPD modeling. Furthermore, we expand the study to surfactant-oil-polar solvent (SOP) systems by varying the interaction parameters between polar solvents (PP). Our finding indicates that the interaction between polar solvents plays an important role in determining the bending tendency of surfactant monolayers; weaker intermolecular attraction between polar solvents makes surfactants tend to bend toward the oil phase (tend to form oil in polar solvent emulsion). Factor analysis reveals that increasing the repulsion between head-head (HH) or head-oil (HO) makes the model surfactants more polar-solvophilic, while increasing the repulsion between polar solvent-head (PH), tail-tail (TT) or oil-oil (OO) makes the model surfactants more lipophilic. The ANN model effectively reproduces the dependence of surfactant monolayer bending tendency on oil size, consistent with experimental observations, the larger the oil size, the higher the bending tendency toward the oil phase. The most intriguing insight derived from the ANN model here is that the effect of branching in the lipophilic tail will be enhanced by factors that make surfactants behave more lipophilic in a surfactant-oil-polar solvent (SOP) system, for rather polar-solvophilic surfactants, the effect of tail branching is negligible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...